Symbolic Processing in Neural Networks

ثبت نشده
چکیده

Abstract. In this paper we show that programming languages can be translated on recurrent (analog, rational weighted) neural nets. Implementation of programming languages in neural nets turns to be not only theoretical exciting, but has also some practical implications in the recent efforts to merge symbolic and subsymbolic computation. To be of some use, it should be carried in a context of bounded resources. Herein, we show how to use resource bounds to speed up computations over neural nets, through suitable data type coding like in the usual programming languages. We introduce data types and show how to code and keep them inside the information flow of neural nets. Data types and control structures are part of a suitable programming language called NETDEF. Each NETDEF program has a specific neural net that computes it. These nets have a strong modular structure and a synchronization mechanism allowing sequential or parallel execution of subnets, despite the massive parallel feature of neural nets. Each instruction denotes an independent neural net. There are constructors for assignment, conditional and loop instructions. Besides the language core, many other features are possible using the same method. There is also a NETDEF compiler, available at http://www.di.fc.ul.pt/~jpn/netdef/netdef.htm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuro-ACT Cognitive Architecture Applications in Modeling Driver’s Steering Behavior in Turns

Cognitive Architectures (CAs) are the core of artificial cognitive systems. A CA is supposed to specify the human brain at a level of abstraction suitable for explaining how it achieves the functions of the mind. Over the years a number of distinct CAs have been proposed by different authors and their limitations and potentials were investigated. These CAs are usually classified as symbolic and...

متن کامل

Neurosymbolic Integration: Uniied versus Hybrid Approaches

Since the mid-1980s, researchers have been pursuing the goal of neurosymbolic integration, i.e., the construction of systems capable of both symbolic and neural processing. We distinguish two major avenues toward this goal: the uniied and the hybrid approaches. Whereas the uniied approach claims that full symbol processing functionalities can be achieved via neural networks alone, the hybrid ap...

متن کامل

Neurosymbolic integration: unified versus hybrid approaches

Since the mid-1980s, researchers have been pursuing the goal of neurosymbolic integration, i.e., the construction of systems capable of both symbolic and neural processing. We distinguish two major avenues toward this goal: the uniied and the hybrid approaches. Whereas the uniied approach claims that full symbol processing functionalities can be achieved via neural networks alone, the hybrid ap...

متن کامل

Hybrid Neural Systems: From Simple Coupling to Fully Integrated Neural Networks

This paper describes techniques for integrating neural networks and symbolic components into powerful hybrid systems. Neural networks have unique processing characteristics that enable tasks to be performed that would be di cult or intractable for a symbolic rule-based system. However, a stand-alone neural network requires an interpretation either by a human or a rulebased system. This motivate...

متن کامل

Diagnosis of brain tumor using image processing and determination of its type with RVM neural networks

Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...

متن کامل

Neural Networks for Real-time Knowledge Based Applications

The architectures under investigation offer a true integration of symbolic and neural network styles of reasoning in a unified framework. In AURA, the basic functional blocks are neural networks which can perform symbolic reasoning, as well as the pattern processing functions normally associated with neural networks. A further feature of the approach is that a powerful partial-match mechanism s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000